• М. Auyelkhankyzy Institute of Combustion Problems, al-Farabi Kazakh National University
  • N. А. Slavinskaya Institute of Combustion Technology, German Aerospace Center (DLR)
  • Т. А. Shabanova Institute of Combustion Problems
  • B. T. Lesbayev Institute of Combustion Problems, al-Farabi Kazakh National University
  • N. G. Prikhodko Institute of Combustion Problems, Almaty University of Energetics and Communications
  • Z. A. Mansurov Institute of Combustion Problems, al-Farabi Kazakh National University
Ключевые слова: mechanism, flame, acetylene, ethylene, propane.


The formation of first-benzene aromatic rings occurs at the same reactionary routes all flames (acetylene, ethylene, and propane), after the decomposition of fuel and formation of aromatic precursors. It has been found that the reaction routes dependent on temperature. To low temperatures, T<1500K dominate routes that include the formation of С2Н3 from С2Н2, and further С4Н5, which in reaction with С2Н2 gives C6H6. To high temperature is dominated the formation reaction of propargyl (С3Н3) and the main reaction formed the benzene is propargyl.


[1] J. J. Thomson, Phil. Mag. Ser. 5, 48, 547 (1899).
[2] H. A. Wilson, The Electrical Properties of Flames and Incandescent Solids, University Press, London (1912).
[3] Homann K.H., Wagner H.G. Some aspects of soot formation//Dynamics of Exothermicity/Ed. J. Ray Bawen (Combust. Sc.Technol. Book Series, Vol. 2). Carbon and Breach Publishers.1996. P. 151–184.
[4] Z.A. Mansurov, Combustion,explosion and Shock Waves,2005,41(6), 727-744
[5] Z.A. Mansurov. Soot formation// Almaty: Kazakh University, 2015, P. 167
[6] N. Slavinskaya, A. Zizin, M. Aigner. J. Eng. Gas Turbines Power, 2010, Vol. 132, No 11, pp.111501.
[7] Slavinskaya N.A. et al. Kinetic study of the effect of ethanol addition on pah and soot formation in ethylene flames // Comb. and flame (impress) (2015)
[8] Hidaka Y., Hattori K., Okuno T., Inami K., Abe T., Koike T. Shock-tube and modeling study of acetylene pyrolysis and oxidation// Combust Flame 1996, 107(4), P. 401–17.
[9] D. M. Kalitan, J.M. Hall, E.L. Petersen. Ignition and Oxidation of Ethylene-Oxygen-Diluent Mixtures with and Without Silane// Journal of Propulsion and Power, Vol. 21, No. 6 (2005), pp. 1045-1056
[10] C.J. Brown, G.O. Thomas. Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures//Combustion and Flame 117:861–870 (1999)
[11] G. Jomaas, X.L. Zheng, D.L. Zhu, C.K. Law. Experimental determination of counterflow ignition temperatures and laminar flame speeds of C2–C3 hydrocarbons at atmospheric and elevated pressures// Proceedings of the Combustion Institute 30 (2005) 193–200
[12] F.N. Egolfopoulos, D. L. Zhu and C.K. Law, Proc. Combust. Inst., 1990, 23, 471.
[13] C. N. Vagelopoulos, F.N. Egolfopoulos, Proc. Combust. Inst., 1998, 27, 513.
[14] R.J. Kee, F.M. Rupley, J.A. Miller. Report No. SAND89-8009B, Sandia Laboratories Report, 1993
[16] K. Hoyermann, F. Mauss, T. Zeuch. A detailed chemical reaction mechanism for the oxidation of hydrocarbons and its application to the analysis of benzene formation in fuel-rich premixed laminar acetylene and propene flames // Phys. Chem. Chem. Phys., 2004, 6, P. 3824-3835
[17] J. Warnatz, U. Maas, R.W. Dibble. Combustion Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation// Ed. J. Warnatz, U. Maas, R.W. Dibble. Springer-Verlag Berlin Heidelberg, 2006, P. 378
[18] M. Auyelkhankyzy, Z.A. Mansurov, N.G. Prikhodko, N. Slavinskaya, et al. Mechanism of graphene and soot particles formation in flames // Carbon-2015, 15-17 July, Dresden, Germany
[19] J. A Baker and G. B. Skinner, Combust. Flame, 1972, Vol. 19, P. 347.