Термодинамика и кинетика фотокатализа для получения водорода при расщеплении воды

  • Б. Бакболат Казахский Национальный университет им. аль-Фараби
  • Ф. Султанов Казахский Национальный университет им. аль-Фараби
  • Ч. Даулбаев Казахский Национальный университет им. аль-Фараби
  • К. Кутербеков Евразийский национальный университет имени Л.Н. Гумилева
  • К. Бекмырза Евразийский национальный университет имени Л.Н. Гумилева
Ключевые слова: Фотокатализ, водород, расщепление воды, энергия Гиббса.

Аннотация

Целью данной работы заключается в описании механизма процесса расщепления воды во время фотокатализа. Разработка получения высокоэффективных фотокатализаторов для производства водорода является одним из важных направлений в области зеленой энергетики. В работе представлена обзорная статья, в котором рассмотрен механизм и основные закономерности фотокатализа расщеплении воды для получения водорода. Обсуждается влияние ширины запрещенной зоны полупроводников на их фотокаталитические свойства.

Литература

[1]. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode // Nature – 1972. –V. 238. –P. 37–38.
[2]. Babu V.J., Kumar M.K., Nair A.S., Kheng T.L., Allakhverdiev S.I., Ramakrishna S. Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures // Int. J. Hydrog. Energy – 2012. – V. 37. –P. 8897–8904.
[3]. Niishiro R., Kato H., Kudo A. Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions // Phys. Chem. Chem. Phys. – 2005. –V. 7. –P. 2241–2245.
[4]. Zuo F., Wang L., Feng P.Y. Self-doped Ti3+@TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity // Int. J. Hydrog. Energy. – 2014. –V. 39. –P. 711–717.
[5]. Qu Y., Zhou W., Ren Z.Y., Tian C.G., Li J.L., Fu H.G. Heterojunction Ag–TiO2 nanopillars for visible-lightdriven photocatalytic H2 production // ChemPlusChem. – 2014. –V. 79. –P. 995–1000.
[6]. Reddy P.A.K., Srinivas B., Kumari V.D., Shankar M.V., Subrahmanyam M., Lee J.S. CaFe2O4 sensitized hierarchical TiO2 photo composite for hydrogen production under solar light irradiation // Chem. Eng. J. – 2014. –V. 247. –P. 152–160.
[7]. Yan J.H., Zhu Y.R., Tang Y.G., Yang H.H. Preparation and photocatalytic activity for H2 production over Pt/SrZr0.95Y0.05O3TiO2−xNx composite catalyst under simulated sunlight irradiation // Chin. J. Inorg. Chem. – 2008. –V. 24. –P. 791–796.
[8]. Ding J.J., Sun S., Yan W.H., Bao J., Gao C. Photocatalytic H2 evolution on a novel CaIn2S4 photocatalyst under visible light irradiation // Int. J. Hydrog. Energy. – 2013. –V. 38. –P. 13153–13158. [9]. Gupta U., Rao B.G., Maitra U., Prasad B.E., Rao C.N.R. Visible-light-induced generation of H2 by nanocomposites of few-layer TiS2 and TaS2 with CdS nanoparticles // Chem. Asian J. – 2014. –V. 9. –P. 1311–1315.
[10]. Yang M.Q., Weng B., Xu Y.J. Improving the visible light photoactivity of In2S3-graphene nanocomposite via a simple surface charge modification approach // Langmuir. – 2013. –V. 29. –P. 10549–10558.
[11]. Zhang J., Yu J.G., Zhang Y.M., Li Q., Gong J.R. Visible light photocatalytic H2 production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer // Nano Lett. – 2011. –V. 11. –P. 4774–4779.
[12]. Zhang X.H., Jing D.W., Liu M.C., Guo L.J. Efficient photocatalytic H2 production under visible light irradiation over Ni doped Cd1−xZnxS microsphere photocatalysts // Catal. Commun. – 2008. –V. 9. –P. 1720–1724.
[13]. Zong X., Yan H.J., Wu G.P., Ma G.J., Wen F.Y., Wang L., Li C. Enhancement of photocatalytic H2 evolution on CdS by loading MOS2 as cocatalyst under visible light irradiation // J. Am. Chem. Soc. – 2008. –V. 130. –P. 7176–7177.
[14]. Zhou C., Zhao Y.F., Shang L., Cao Y.H., Wu L.Z., Tung C.H., Zhang T.R. Facile preparation of black Nb4+ self-doped K4Nb6O17 microspheres with high solar absorption and enhanced photocatalytic activity// Chem. Commun. –2014. –V. 50. –P. 9554–9556.
[15]. Yan H.J., Yang J.H., Ma G.J., Wu G.P., Zong X., Lei Z.B., Shi J.Y., Li C. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt–PdS/CdS photocatalyst // J. Catal. – 2009. –V. 266. –P. 165–168.
[16]. Zou Z.G., Ye J.H., Arakawa H. Substitution effects of In3+ by Fe3+ on photocatalytic and structural properties of Bi2InNbO7 photocatalysts // J. Mol. Catal. A Chem. – 2001. –V. 168. –P. 289–297. [17]. Luan J.F., Chen J.H. Photocatalytic water splitting for hydrogen production with novel Y2MSbO7 (M = Ga, In, Gd) under visible light irradiation // Materials. – 2012. –V. 5. –P. 2423–2438. [18]. Huang Y., Zheng Z., Ai Z.H., Zhang L.Z., Fan X.X., Zou Z.G. Core-shell microspherical Ti1−xZrxO2 solid solution photocatalysts directly from ultrasonic spray pyrolysis // J. Phys. Chem. B. – 2006. –V. 110. –P. 19323–19328.
[19]. Tang J.W., Zou Z.G., Yin J., Ye J. Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation // Chem. Phys. Lett. – 2003. –V. 382. –P. 175– 179.
[20]. Luan J.F., Ma K., Pan B.C., Li Y.M., Wu X.S., Zou Z.G. Synthesis and catalytic activity of new Gd2BiSbO7 and Gd2YSbO7 nanocatalysts // J. Mol. Catal. A Chem. – 2010. –V. 321. –P. 1–9.
[21]. Luan J.F., Xu Y. Photophysical property and photocatalytic activity of new Gd2InSbO7 and Gd2FeSbO7 compounds under visible light irradiation // Int. J. Mol. Sci. – 2013. –V. 14. –P. 999–1021. [22]. Tauc J., Grigorovici R., Vancu A. Optical properties and electronic structure of amorphous germanium // Phys. Status Solid. – 1966. –V. 15. –P. 627–637.
[23]. Butler M. Photoelectrolysis and physical-properties of semiconducting electrode WO2 // J. Appl. Phys. – 1977. –V. 48. –P. 1914–1920.
[24]. Moniruddin Md., Ilyassov B., Zhao X., Smith E., Serikov T., Ibrayev N., Asmatulu R., Nuraje N.. Recent progress on perovskite materials in photovoltaic and water splitting applications // Material Today Energy. – 2017. –V. 7. –P. 246-259.
[25]. O’Regan B. and Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films/ // Nature. – 1991. – V. 353, №6346. –P. 737–740.
[26]. Abe R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation // J. Photochem Photobiol C – 2010. –V. 11. –P. 179-209.
[27]. Shi N., Li X., Fan T., Zhou H., Zhang D., Zhu H. Artificial chloroplast: Au/chloroplast-morph-TiO2 with fast electron transfer and enhanced photocatalytic activity // Int J Hydrogen Energy – 2014. –V. 39. –P. 5617-5624.
[28]. Clarizia L., Spasiano D., Di Somma I., Marotta R., Andreozzi R., Dionysiou D.D. Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review // Int J Hydrogen Energy – 2014. –V. 39. –P. 16812-16831.
[29]. Dincer I., Acar C. Review and evaluation of hydrogen production methods for better sustainability // Int J Hydrogen Energy – 2015. –V. 40. –P. 11094-10111.
[30]. Kondarides D.I., Daskalaki V.M., Patsoura A., Verykios X.E. Hydrogen production by photo-induced reforming of biomass components and derivatives at ambient conditions // Catal Lett – 2007. –V. 122. –P. 26-32.
[31]. Tahir M., Amin N.S. Advances in visible light responsive titanium oxide-based photocatalysts for CO2 conversion to hydrocarbon fuels // Energy Convers Manage – 2013. –V. 76. –P. 194-214.
[32]. Chouhan N., Ameta R., Meena R.K., Mandawat N., Ghildiyal R. Visible light harvesting Pt/CdS/Co-doped ZnO nanorods molecular device for hydrogen generation // Int J Hydrogen Energy – 2016. –V. 41. –P. 2298-2306.
[33]. Grewe T., Meggouh M., Tuysuz H. Nanocatalysts for solar water splitting and a perspective on hydrogen economy // Chem Asian J – 2016. –V. 11. –P. 22-42.
[34]. Acar C., Dincer I., Zamfirescu C. A review on selected heterogeneous photocatalysts for hydrogen production // Int J Energy Res – 2014. –V. 38. –P. 1903-1920.
[35]. Xu Y., Xu R. Nickel-based cocatalysts for photocatalytic hydrogen production // Appl Surf Sci – 2015. –V. 351. –P. 779-793.
[36]. Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts // Appl Surf Sci – 2017. –V. 391. –P. 72123.
[37]. Zhu J., Zach M. Nanostructured materials for photocatalytic hydrogen production // Curr. Opin. Colloid. Interface Sci. –2009. –V. 14. –P. 260-269
[38]. Chiarello G.L., Aguirre M.H., Selli E. Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2// J Catal. –2010. –V. 273. –P. 182190.
[39]. Etacheri V., Di Valentin C., Schneider J., Bahnemann D., Pillai S.C. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments // J Photochem Photobiol C – 2015. –V. 25. –P. 1-29.
[40]. Colon G. Towards the hydrogen production by photocatalysis // Appl Catal A – 2016. –V. 518. –P. 48-59.
[41]. Maeda K. Photocatalytic water splitting using semiconductor particles: history and recent developments // J Photochem Photobiol C – 2011. –V. 12. –P. 237-268.
[42]. Zamfirescu C., Naterer G., Dincer I. Photo-electrochemical chlorination of cuprous chloride with hydrochloric acid for hydrogen production // Int J Hydrogen Energy – 2012. –V. 37. –P. 9529-9536. [43]. Zamfirescu C., Dincer I., Naterer G. Analysis of a photochemical water splitting reactor with supramolecular catalysts and a proton exchange membrane // Int J Hydrogen Energy – 2011. –V. 36. –P. 11273-11281.
[44]. Liu B., Zhao X., Terashima C., Fujishima A., Nakata K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems // Phys Chem Chem Phys – 2014. –V. 16. –P. 8751-8760.
[45]. Shehzad N., Tahir M., Johari K., Murugesan T., Hussain M. A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency // J CO2 Util – 2018. –V. 26. –P. 98-122.
[46]. Yang X., Cao C., Hohn K. Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde // J. Catal. – 2007. –V. 252. –P. 296-302.
[47]. Liu B., Zhao X., Terashima Ch., Fujishimab A., Nakata K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems // Phys. Chem. Chem. Phys. –2014. –V. 16. –P. 8751-8760.
[48]. Hoffmann M.R., Martin S.T., Choi W. Environmental Applications of Semiconductor Photocatalysis // Chem. Rev. – 1995. –V. 95. –P. 69-96.
[49]. Fujishima A., Rao T.N., Tryk D.A. Titanium Dioxide Photocatalysis // J. Photochem. Photobiol. C – 2000. –V. 1. –P. 1-11.
[50]. Villarreal T.L., Gomez R., Neumann-Spallar M., AlonsoVante N., Salvador P. Semiconductor photooxidation of pollutants dissolved in water:  A kinetic model for distinguishing between direct and indirect interfacial hole transfer. I. photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination // J. Phys. Chem. B – 2004. –V. 108. –P. 15172-15181.
[51]. Emeline A.V., Ryabchuk V.K., Serpone N. Dogmas and misconceptions in heterogeneous photocatalysis. Some enlightened reflections // J. Phys. Chem. B – 2005. –V. 109. –P. 18515-18521.
[52]. Ollis D.F. Kinetics of Liquid Phase Photocatalyzed Reactions:  An illuminating approach // J. Phys. Chem. B –2005. –V. 109. –P. 2439–2444.
Опубликован
2019-08-07
Раздел
Статьи