Assessment of synthesis methods of SiO$_2$ produced from rice husk and its main physicochemical characteristics

K. Askaruly1, Zh. Sartova3, S. Azat1,3, M. Yelev1,2, A. Taurbekov1,3

1Institute of Combustion Problems, Almaty, Kazakhstan
2Satbayev University, Almaty, Kazakhstan
3Al-Farabi Kazakh National University, Almaty, Kazakhstan

Received: 11 October 2018
Accepted: 21 October 2018
Available online: 25 December 2018
UDK 661.68; 633.18

1. Introduction

Rice is the second largest produced cereal in the world. According to information from the Food and Agriculture Organization of the United Nations, world rice production in 2016 was 748.0 million tons in the global rice market (Figure 1) [1]. While in Kazakhstan, according to the information of Ministry of Agriculture of the Republic of Kazakhstan, the main regions in the territory of the republic involved in rice production are: Kyzylorda Region (78.4 thousand ha), Almaty Region (11.1 thousand ha) and Turkestan Region (3 thousand ha) [2-3]. Rice growing in Kazakhstan is developed mainly in the land areas of the lower reaches of the Syrdarya River, in the territory of the Kyzylorda Region.

In most varieties rice is composed by approximately 20% of rice husk, which contains a fibrous materials and silica (from 1 ton of paddy it is possible to produce 220 kg of rice husk).

Major constituents of RH are cellulose, hemicellulose, lignin, and silica, and a typical composition of these constituents is tabulated in Table 1 [4-6]. The inorganic compounds contained within the rice husk reached about 20% of the dry husk with silica occupying 15-17% of the total while cellulose and lignin which are the main organic components take more than 75% of the total dry weight of the husk while the remaining percentage as oils, proteins, etc. The percentage composition varies with soil type, climatic conditions, crop type, plantation year and fertilizers.

Recycling of Rice Husk

Depending on the combustion process, the RHA can contain silica in an amorphous form. The amorphous form of silica is obtained from the RHA obtained by burning rice husks at controlled temperatures below 700 °C. The transformation of this amorphous state into a crystalline state occurs if the ash is exposed to high temperatures above 850 °C [7]. While crystalline silica is used in ceramics [8] and in the cement industry [9], amorphous silica has even more applications [10]. Therefore, this residue can be considered as a new economically advantageous raw material for the production of silica [11].

Rice husk ash, obtained by burning rice husks, can contain more than 90% of silica and an amount of metallic impurities. Metallic impurities such as iron (Fe), manganese (Mn), calcium (Ca), sodium (Na), potassium (K) and magnesium (Mg), which affect the purity and color of silica, can be eliminated by pretreatment with hydrochloric acid, sulfuric acid or nitric acid.
acid before burning [12].

India, Pakistan, Bangladesh, Sri Lanka, Australia, Thailand, Indonesia, and USA were pioneers in the recycling of rice husk during 1970–1985, which were supported by government and other organizations. Unique characteristics of rice husk in comparison with other agricultural residues, such as high silica contents (87-97 wt% SiO$_2$), high porosity, lightweight and very high external surface area make it a valuable material for industrial applications.

Rice husk during combustion gives ash, which contains a very high percentage of crystalline silica. Nevertheless, if it is burned under controlled conditions is obtained amorphous silica, which has a high reactivity.

The heat, generated by burning rice husk, eventually converted into mechanical energy for grinding the ash. RHA during mixing with Portland cement produces high-strength concrete. The conducted studies indicate the possibility of converting RH into amorphous silica with high reactivity, which can be applied in high-strength concrete. Chouhan et al. reported that the temperature of complete combustion of the rice husk affects the compression strength of the lime-RHA.

![Fig. 1. Rice monitoring of the world market [1]](image1)

![Fig. 2. Different methods for producing different structural silica from RH. Adapted from [13]](image2)
solution [14]. In addition, here the main role is played by the reactivity of silica. Thus, the quality of the RHA depends on various factors, such as the temperature of complete combustion, the time, the heating rate, the type of oven/kiln, etc. However, the efficiency of combustion, the optimal use of energy is extremely important for determining the economic benefits of the entire process, which requires careful study.

Chen et al. used fluidized bed combustion (bed material: quartz sand) to produce amorphous silica whose purity level does not exceed 94.8% and, therefore, this method is not suitable for the production of many value-added products [15]. The method of using 1M NaOH was used by Kalapathy et al. to obtain silica from rice husk ash with a purity of more than 97%, in order to create a silicate heat-insulating material [16]. Later, in 2011, Ma et al. was proposed a recyclable technology for the production of silica powder using rice husks and ammonium fluoride. The purity of the final dioxide reached up to 94.6% [17].

Liou et al. obtained amorphous nanostructured silica powders with an average particle size of 60 nm and a high specific surface area by using nonisothermal decomposition of rice husk at temperatures between 27-727 °C by using different burning rates [18]. Yalcin et al. demonstrated that the homogeneous particle size distribution of nano-sized silica can be obtained by burning pre-treated rice husks at 600-800 °C in an atmosphere of pure oxygen [19]. However, by analyzing these methods, it can be concluded that methods that are capable to obtaining high purity nano-silica are chemical based on hazardous and environmentally hazardous products, and can be expensive, requiring additional precautions.

Sodium silicate is used as a source of silicon in the industrial production of silica. However, sodium silicates obtained by melting quartz sand and sodium carbonate at 1300 °C require not only a large amount of energy but also further purification (Affandi et al., 2009 [20]). In addition, this can be the cause of widespread environmental pollution. Alternative solution of this problem can be the low-temperature extraction of amorphous silica from plant biomass, which makes it possible to produce a high-quality, environmentally friendly and economical product (Liou et al., 2011 [21]).

Ghorbani et al., 2013 showed that 600 °C is the optimum temperature for the production of amorphous silica [22]. Nevertheless, Rozainee et al. found that the RHA remains amorphous at calcination at 700 °C for 6 h [23].

Many researchers used heat treatment of husks and processing with various chemical reagents (HCl, H₂SO₄, HNO₃, NaOH, NH₄OH, etc.) to produce amorphous high purity silica from rice husks [24-27] before and after burning at temperatures from 773 to 1673 K and at different time intervals. Chemical processing before burning was more beneficial. Whereas the formation of black particles in the composition of silica from the untreated husk was found to be higher than the acid-treated husks. It has been proved that potassium in the husks causes this phenomenon, which is largely removed by acid treatment [25-26].

2. Experimental Part

Extraction of silica nanoparticles

The versatile material RHA has generated great amount of interest in researchers worldwide. Researchers have worked on various techniques for the synthesis of silica nanoparticles using different templates to control the shape and size of the particles. However in this present study, a simple, template free methods such as pre-acid wash treatment (hydrochloric acid, citric acid) and thermal treatment was used to prepare silica nanoparticles. The aim of acid pre-treatment is to improve the purity of silica product. It proves to be an effective way in substantially removing most of the metallic impurities and producing ash silica completely white in color. The acid treatment also gives a high surface area for the silica when it is precipitated. In addition, the quality of producing nanosilica powder depends on the calcinations or combustions temperature and duration of calcinations or combustions.

WRHA that predominantly contains silica dissolves in sodium hydroxide solution after pre-treatment. Sodium silicate formed is used as precursor for silica synthesis. The principal reaction are described as follows:

\[
2\text{NaOH} + \text{SiO}_2 \rightarrow \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O}
\]

\[
\text{Na}_2\text{SiO}_3 + 2\text{HCl} \rightarrow 2\text{H}_2\text{SiO}_3 + 2\text{NaCl}
\]

\[
\text{H}_2\text{SiO}_3 \rightarrow \text{SiO}_2 + \text{H}_2\text{O}
\]

Table 1

<table>
<thead>
<tr>
<th>Composition</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose</td>
<td>25-35</td>
</tr>
<tr>
<td>Hemicellulose</td>
<td>18-21</td>
</tr>
<tr>
<td>Lignin</td>
<td>26-31</td>
</tr>
<tr>
<td>Silica</td>
<td>15-17</td>
</tr>
<tr>
<td>Soluble</td>
<td>2-5</td>
</tr>
<tr>
<td>Moisture content</td>
<td>5-10</td>
</tr>
</tbody>
</table>
Reaction of hydrochloric acid with sodium silicate promotes a silanol (R₃Si–OH) groups formation and condensation of which leads to the formation of extended three-dimensional Si–O–Si network. The appearance of raw rice husk, white rice husk ash and extracted silica is shown in Figure 3.

Methodology of obtaining SiO₂ by processing of rice husks

As research objects served the shells of rice (Rice Husks), selected from different regions of the Republic of Kazakhstan (Figure 4). Samples of rice husk with a length of about 5-10 mm were pre-washed with water and dried in air.

The samples (Almaty, Kyzylorda and Turkestan region) of rice husks were previously washed with water for the purification of the composition from foreign substances. Then the initial raw materials were dried in the drying oven at the temperature of 90 °C for 2 h (for complete evaporation of the water in the composition). All prepared samples (50 g) were calcinated at 600 °C for 4 h in a muffle furnace (AAF series, Carbolite (UK)) to produce white rice husk ash (WRHA). Before to produce white rice husk ash we had done pre-treatment process. WRHA was mixed with 100 mL of 2M NaOH at 90 °C under continuous vigorous stirring for 2 h in order to convert the solid silica into water-soluble sodium silicate. The sodium silicate solution was filtered via cellulose membrane filter (Millipore, 0.45 µm) in order to remove insoluble residues and carbonizates (black ashes). Then sodium...
silicate was converted into insoluble silicic acid via titration with 2M HCl under continuous stirring for 30 min.

The ash product from combustion water-washed rice husk was completely white. This enabled the distinct determination of the rice husk combustion times, whereby the first formation of completely white ash signified the complete combustion of rice husk.

Scheme of rice husk conversion into the silica by thermal treatment is presented on a Figures 5.

3. Results and discussion

It was used two different reagents (hydrochloric acid and citric acid) in the pre-treatment process for washing RH. Silica from pre-treated RH is extracted using 100 mL of 2M NaOH. It was found that the yield...
Table 2
Yield of WRH, Silica from RHs (Almaty region, Kyzylorda region and Turkestan region) during pre-treatment with hydrochloric acid

<table>
<thead>
<tr>
<th>Sample</th>
<th>Yield, wt%</th>
<th>RH 1</th>
<th>RH 2</th>
<th>RH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRH</td>
<td></td>
<td>19</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>SiO₂</td>
<td></td>
<td>17.4</td>
<td>11.5</td>
<td>11</td>
</tr>
<tr>
<td>Raw RH</td>
<td></td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Fig. 7. Percent yield of the white rice husk (WRH) and rice husk silica (RHS) extracted from the rice husk (RH) of different region of Kazakhstan by hydrochloric acid treatment

Fig. 8. Influence of Volume of HCl on the pH of RH washing
Table 3
Influence of PH & Volume of HCl on the yield of obtained final product

<table>
<thead>
<tr>
<th>PH of solution</th>
<th>RH 1</th>
<th>RH 2</th>
<th>RH 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.4</td>
<td>11</td>
<td>11.28</td>
</tr>
<tr>
<td>2</td>
<td>11.37</td>
<td>11.11</td>
<td>11.04</td>
</tr>
<tr>
<td>3</td>
<td>10.67</td>
<td>10.02</td>
<td>9.12</td>
</tr>
<tr>
<td>4</td>
<td>9.29</td>
<td>9.24</td>
<td>8.78</td>
</tr>
<tr>
<td>5</td>
<td>8.87</td>
<td>8</td>
<td>6.68</td>
</tr>
<tr>
<td>6</td>
<td>6.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>11.47</td>
<td>11.75</td>
<td>11.47</td>
</tr>
</tbody>
</table>

of silica is strongly dependent on the type of acid used for washing and concentration of NaOH. The results are shown in the Table 2 and Figures 6, 7.

The yield of silica from the rice husks and its purity also depend on the production method. The highest yield of final pure product (17.4%) is formed by preliminary acid treatment of RH from Almaty region. The silica content varies in the range of ~90.1-99.5% depending on the purity of used reagent for washing (acid and its composition).

The dependence of the volume of hydrochloric acid on the pH of solution used for the preliminary washing of RH demonstrates that in the neutral medium (pH = 7) yield of the final product is significantly larger (Figure 8, Table 3).

As shown by the experiment, from 50 g of rice husks it is possible to obtain 8.71 g of white rice ash, 6 g of pure silicon oxide (purity ~90.1-99.5%), which means that from 1 ton of the rice husks it is possible to obtain 120 kg of silicon oxide and from the remains of rice husks in Kazakhstan, approximately in a year 8000 tons of silicon dioxide.

Conclusion

In this paper considers the production of SiO₂ from rice husks, which selected from different regions of the Republic of Kazakhstan.

The experimental data indicate the dependence of the characteristics of the silicon-containing samples extracted from the rice husks on the processing conditions of the raw materials: the size of the formed particles, their shape, percentage of silica in rice husk, influence of volume of HCl on the pH of RH washing. Proposed approach not only assess the feasibility of turning agricultural byproduct into a valuable resource but also will solve the problem of its disposal in the environment, which otherwise results in water, air and soil pollution.

References

[12]. Bakar R.A., Yahya R., Gan S.N. Production of High Purity Amorphous Silica from Rice Husk //
К. Аскарулы / Горение и плазмохимия 16 (2018) 186-194

2

К. Аскарулы2, Ж. Сартова1,3, С. Азат1,3, М. Елеуов1,2, А. Тауырбеков1,3

11Жану Проблемалары институты, Богенбай батыр 172, Алматы, Казахстан
12Satbayev University, Алматы, Казахстан
13ал-Фараби атындағы Қазақ Ұлттық университеті, ал-Фараби даярлары 71, Алматы, Казахстан

Аннотация
Кремнеземний куриш қауызынан андірлген SiO\textsubscript{2} синтездеу әдістерін бағалау және оның негізгі физика-химиялық сипаттамаларына қолғандар. Кремнеземнің куриш қауызынан өндіру зерттеулердің заманауи саласының жаңа үрдісі болып табылады. Кремнеземнің куриш қауызынан өндіру зерттеулердің заманауи саласының жаңа үрдісі болып табылады. Кремнеземнің куриш қауызынан өндіру зерттеулердің заманауи саласының жаңа үрдісі болып табылады.

Разтворение температуры на морфологии и фазовых преобразованиях нанокристаллической кремнеземной из рисового ертеу // Аналитическая химия. – 2009. – Том 94, № 1. – С. 70-78.

Оценка методов синтеза SiO₂, полученного из рисовой шелухи, и его основные физико-химические характеристики

К. Аскарулы², Ж. Сартова³, С. Азат¹, М. Елеуов¹, А. Тауырбеков¹,³

¹Институт Проблем Горения, Богенбай Батыра 172, Алматы, Казахстан
²Satbayev University, Сатпаева 22а, Алматы, Казахстан
³КазНУ им. аль-Фараби 71, Алматы, Казахстан

Аннотация
Извлечение кремнезема из рисовой шелухи является новой тенденцией в современной области исследований. Большое количество рисовой шелухи (РШ) рассматривается как отходы и утилизируется на полигонах. Эти отходы также могут стать причиной пожара, который может привести к серьезному загрязнению окружающей среды. Частицы воздуха, образующиеся из пыли, могут вызывать респираторные заболевания у людей. Сжигание рисовой шелухи приводит к образованию золы рисовой шелухи (ЗРШ) с большим содержанием SiO₂ с углеродом и органическими компонентами от 10 до 20% в зависимости от условий сжигания, типа печи, сорта риса, климата и географического района. Кроме того, обычно используемый предшественник диоксида кремния, такой как тетраэтилсиликат, является более дорогим, и, следовательно, зола рисовой шелухи (ЗРШ) и другие источники отходов, содержащие диоксид кремния, используются в качестве альтернативы. Кислотное выщелачивание рисовой шелухи может быть проведено для удаления растворимых элементных примесей, и, следовательно, это повышает чистоту содержания кремнезема. Органические соединения в рисовой шелухе и других отходах могут разлагаться в условиях горения. В последние годы экологический спрос и устойчивое развитие становятся все более важным. Важно изучать и использовать биоотходы в отношении РШ и преобразовывать их в ценные материалы. Это основное направление этого исследования. В данной статье будут рассмотрены методы синтеза SiO₂ из рисовой шелухи и ее физико-химические характеристики.

Ключевые слова: рисовая шелуха, кремнезем, SiO₂, зола рисовой шелухи, отходы